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Research Article

Measurement of Nuchal Translucency Thickness  
in First Trimester Ultrasound Foetal Images  
Using Markov Random Field

Kalyani Chaudhari1 and Shruti Oza2

Abstract

Background: The first-trimester ultrasound assessment of nuchal translucency (NT) thickness has lately been recommended 
as the most helpful sign in early screening for prenatal chromosomal disorders. Increased foetal NT thickness between 11 
and 13+6 weeks of gestation is a frequent phenotypic manifestation of chromosomal abnormalities as well as a variety of 
foetal deformities and genetic disorders.
Purpose: At the moment, clinicians conduct the measurement manually. The measurement may take a long time to complete, 
requires highly competent operators, and is susceptible to mistakes. So, an automatic method is required for NT measurement.
Materials and Methods: This study proposes a Markov random Field-based approach for contextually segmenting the NT 
area from foetal pictures and offering a quick and inexpensive diagnostic even during the early stages of pregnancy.
Results: Proposed method gives maximum NT thickness error 0.03 and minimum NT thickness error 0.04.
Conclusion: The proposed research work developed a prototype for an automated NT thickness measuring system. This study proposes 
an MRF-based model for segmentation and detection of NT area from foetal pictures which gives error is less than other methods.
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Introduction

Nuchal translucency (NT), as shown in Figure 1, is a liquid 
fill under the foetus’s neck skin that shows sonographically 
like an anechogenic area (i.e., a black zone in greyscale 
images) among two echogenic areas (i.e., bright zones). The 
thickness of the NT, also known as the diameter, is associated 
not only with Down’s Syndrome (DS), but also with other 
genetic conditions such as Edwards’ (trisomy 18), Palau’s 
(trisomy 13), Turner’s syndromes, and heart problems.1,2

For almost two decades, researchers have been captivated 
by the link between increasing foetal neck thickness and 
genetic and cardiac problems.3 Benacerraf et al.4 reported a 
study in 1987 that linked DS to higher nuchal fold thickness 
evaluated during 16 weeks of gestation in 5500 foetuses. 
Following that, Nicolaides et al.5 reported an increased 
incidence of chromosomal abnormalities in foetuses with 
high nuchal fluid buildup at 10–14 weeks gestation. NT is a 
subcutaneous accumulation of fluid in the foetal neck that is 
detected by ultrasonography during the initial trimester of 
pregnancy.6 NT thickness rises with foetal crown-rump length 
in normal foetuses (CRL). Contributing factors for expanded 
NT usually involve cardiac dysfunction associated with heart 

and great artery abnormalities, venous congestion inside the 
head and neck, altered extracellular matrix composition, 
collapse of lymphatic drainage due to atypical or delayed 
lymphatic system development, or impaired foetal 
movements, foetal anaemia or hypoproteinaemia, and 
congenital infection. Table 1 summarises the relationship 
between NT thickness and the frequency of chromosomal 
problems, miscarriage, foetal mortality, and significant foetal 
abnormalities. With increasing NT thickness, the frequency 
of chromosomal abnormalities grows dramatically. It became 
obvious very quickly that an elevated NT is not just a 
diagnostic for chromosomal abnormalities, but also a generic 
evidence of a disruption in regular early development.
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Accurate measurements are critical because differences of 
even just a few tenths of a millimetre might have therapeutic 
implications owing to the influence on the detection rate.7 The 
positioning of the callipers on the monitor is an important 
factor in NT measurement quality. Callipers could be adjusted 
by a small distance of 0.1 mm using current technology. The 
method for measuring NT, the necessity for proper sonographer 
training and external quality verification, and the use of NT in 
successful monitoring for genetic abnormalities are all well 
established.8 Traditional segmentation algorithms confront 
several obstacles, including fuzzy edges, intensity uniformity, 
increased time consumption, and a significant likelihood of 
inaccuracy in recovering the NT area. Rapid identification of 
DS would overcome these challenges and give a more accurate 
and timely diagnosis of the foetus. The objective of this article 
is to introduce an effective tool to aid in early diagnosis through 
the automatic quantification of NT; the suggested scheme can 
identify NT and a way of measuring its thickness without the 
need for user intervention, thereby eliminating inter- and intra-
observer variability.

The following is how the article is structured. The second 
section provides a summary of the background literature. The 
third section presents a problem formulation for estimating 
the NT area using Fuzzy Clustering and MRF. The 

segmentation method used to detect the NT edges properly is 
described. The fourth section presents the experimental 
outcomes. The fifth section concludes the article.

Literature Survey

There are various publications on the measurement of NT in 
the literature; Sciortino et al.9 present a novel approach to 
assist the clinician in both automatically identifying the 
nuchal area and obtaining an accurate thickness estimate of 
the NT. Thomas et al.10 describe a SegNet model based on a 
Convolutional Neural Network (CNN) and a VGG-16 for 
semantically separating the NT area from US foetal images 
and delivering a rapid and economical assessment during 
the beginning phases of gestation. An AlexNet-based 
transfer learning technique is used to train the NT segmented 
areas for the detection of the midsagittal plane, Chudhary 
et al.11 suggested an automated NT identification approach 
based on SIFT feature point and GRNN. This non-invasive 
method is critical not just for NT testing, but also for 
detecting severe abnormalities and identifying high-risk 
pregnancies.12 Ping et al.13 investigate the use of ultrasonic 
assessment of foetal NT width in early gestation and its 
association with unfavourable pregnancy outcomes. Lee 
et al. proposed14,15 a semi-automatic method of foetal NT 
thickness measurement that utilises a coherence-enhancing 
diffusion filtration to improve the frontier and eliminate, 
accompanied by identification of the NT using optimisation 
techniques to minimise a cost function that combines 
intensity, edge strength, and continuity. Catanzariti et al.16 
offer a method that finds the boundary of an NT automatically 
once a targeted area has been explicitly selected. The 
approach is based on cost function minimisation and is 
optimised using the dynamic programming paradigm.

Deng et al.17 suggested a hierarchical structural model for 
identifying the NT area automatically. To represent the NT, 
head, and body of foetuses, three discriminative classifications 
are initially trained using Gaussian pyramids. The spatial 
constraints among them are then denoted by a spatial model. 
Eventually, the suggested model is inferred using dynamic 
programming and the generalised distance transform, ensuring 
that the best solution for NT detection is reached. Nirmala et al. 
reported18 the NT Width measurement in screening 

Table 1. NT Thickness and the Frequency of Chromosomal Problems2,10

Nuchal Translucency10 Major Foetal Abnormalities10 Foetal Death10 Chromosomal Defects2 [A1_2]

1 >6.5 mm 46.2% 19.0% 64.5%

2 5.5–6.4 mm 24.2% 10.1% 50.5%

3 4.5–5.4 mm 18.5% 3.4% 33.3%

4 3.5–4.4 mm 10.0% 2.7% 21.1%

5 95th–99th centiles 2.5% 1.3% 3.7%

6 <95th centile 1.6% 1.3% 0.2%

Figure 1. Nuchal Translucency.1
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first-trimester foetus for DS. The NT zone was segmented 
using mean shift analysis as well as canny operators, and the 
precise thickness was calculated using Blob analysis. Liu et al.19 
create a CNN comprising fully linked layers to directly identify 
the NT area. Explicit identification of other body parts, on the 
other hand, necessitates extra annotation, development, and 
processing expenditures. In circumstances of ambiguous head 
placement or non-standard head-NT relations, it may also create 
cascading mistakes. In addition, we use U-Net with a tailored 
design and loss algorithm to provide exact NT segmentation. 
Finally, principal component analysis is used to compute NT 
thickness.

Methodology

The work that this article discusses is part of a larger initiative 
aimed at designing and developing software tools that could 
simplify the entire procedure of non-invasive screening for 
the operator. An automated system has several advantages. 
First, the evaluation would become consistent and repeatable, 
increasing the overall reliability of the test and perhaps 
minimising the frequency of intrusive screenings.20 Second, 
with automated measurement, the time required for a single 
assessment would be reduced, shortening the time patients 
must wait before being evaluated while enhancing the number 
of screens that may be conducted daily.21

The goal of image segmentation is to divide the image into 
a set of meaningful chunks, or regions, based on the intensity 
values indicated by their pixels. Specifically, segmentation 
divides the image into a set of c  crisp regions i� �  that are 
maximum linked and each i  is consistent based on a set of 
criteria. Normally, determining whether a pixel belongs to an 
area is challenging. To cope with such a circumstance, the 
segmentation procedure employs fuzzy set ideas. FCM 
(Fuzzy C-mean) (Pal and (Ed.). 1992) is one of the most used 
fuzzy clustering techniques for medical image segmentation. 
FCM divides xk k� � �1

  into clusters by minimising the objective 
function provided as:
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xk= Gray Value associated with kth pixel
vi= ith Cluster Center
uik= Fuzzy menmbership Value of pixel k
m = Fuzziness Exponent with valuelarger than 1

Mobility of the contour is constrained by the provided image 
in active contour approaches. If the item being detected is 
present in the image, the contour will begin above it and 
move inward along the object’s normal until it hits the edge. 
The LMS, which was first proposed by Osher and Sethian in 
1988, employs a zero-level function supplied at time t as a 2D 
Lipschitz function indicated by ϕ( , )x y  representing contour 
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given at time t  as ϕ( , )x y . The evolution equation for a level-
set function may be expressed as a partial differential 
equation, as follows:
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In this case, the coordinates � 0, ,x y� �  reflect the starting 
shape, while   stands for both external and internal forces.

Proposed Segmentation

Initially, the suggested technique would segment the region 
of interest (ROI) using a level-set method and fuzzy clustering. 
In the suggested method, the level-set function is initialised to 
an initial value using fuzzy clustering. The FCM creates 
misleading blobs and outliers in the picture. Gaussian filtering 
is used to isolate these ancillary effects. Following these 
steps, the results of the fuzzy clustering are used to initialise 
the level-set function.

i j, =MembershipFunction

i j, = ROIextracted fromImage

A ROI is computed using,

i j
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b is0 0 1�� �, adjustable threshold

The level-set function is set up initially as:

	
� �0 2 2 1x y i j, ,� � � �� �

�
[3]

	
� � constantmeant for regularizing theDirac function

In traditional level-set approaches, controlling parameters are 
inputted manually, with values shifting according to the 
needed application, in order to influence the development of 
the level-set function. The suggested technique utilises the 
outputs of fuzzy segmentation to perform an adaptive 
evaluation of all the necessary controlling parameters. The 
Heaviside function and the Dirac function are used to assess 
the area and the length of the contour generated by fuzzy 
clustering.
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Here, the Heaviside function may be described as:
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and the Dirac function as:
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An increase in balloon pressure, the extraction zone is drawn 
in by the level-set function, which is generated by the 
parameter m. Based on the sign of m , the balloon force either 
contracts or expands the level-set function, eliminating the 
need to initialise the level-set function at the limits of the 
needed object. The pressure is represented by the size of m , 
which is shown to be sufficiently big to squeeze through 
artificial boundaries. This means that in the suggested 
technique, the value of m  is calculated based on the output of 
the fuzzy segmentation as:

	 v ui j� �0 5. , 	 [8]

ui j, = membership function associated with

fuzzysegmentation for evverypixel

The Markov Random Field (MRF) is a sophisticated 
stochastic modelling technique that may be used to efficiently 
depict the local interactions between the properties of 
neighbouring pixels. More than that, it may use Bayesian 
probability distributions to represent the spatial relationship 
between neighbouring pixels. Segmentation is performed 
using the maximum posterior probability (MAP) of the 
labelling space provided by the image data.22 Energy 
maximisation problems are at the heart of the MRF MAP 
specifications. In addition to the combinatorial nature of the 
maximisation problem, the nonconvexity of the energy 
function and the presence of several local minima in the 
image’s solution space make it difficult to achieve a global 
maximum. The innovative Hidden Markov Random Field 
(HMRF) method was developed as a spinoff of the Hidden 
Markov Model,23 a Markov chain-based algorithm. As a 
graphical probability prototype, HMRF does not directly 
discover the proper states but rather estimates them via a 
network of observations.
An observable random field is present in HMRF models,

a aa� �� �1, , 

ai = FeatureValueof Pixel

Which seeks to deduce an underlying stochastic field

HiddenRandomField � �� �b bi , , 

bi ∈

 = set of all possible labels.

bi = configuration of labels

If the following Markovian condition is true, then the label 
field ai  with regard to its neighbourhood system is an MRF.
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 � � �� � � � �Spot related to another oneanother withneighbourhood Sysstem

N N S� �� �i i,

 i i= pots adjacent to pixel

bNi = NeighbourhoodConfiguration

MRF’s Equation z1  for conditional independence looks like 
this
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Assuming a  is selected at random from a probability 
distribution f a k; , ,�� �  for k ∈ , the marginal probability 
of ai  is given by:
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Measurement of the HMRF using the EM algorithm:
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A Gibbs distribution may be thought of as an alternative way 
to describe an MRF:
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z : normalization constant

b� � � potential function

In Equation [12], the prior probability � b� �  is a Gibbs 
distribution, and its joint probability is expressed as

	 � � � �( | , ) , ,| |a b a b a bi i i i i bi� ��� � � � � � � 	 [15]

� �ai i bi|b Gaussian distribution with parameters, :� �
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To summarise the HMRF-EM method in a nutshell:
Step 1: Initialise parameter set.
Step 2: The second stage entails determining the probability 

distribution. � �ai i bi|b ,� � .

Step 3: Using � t� �  to calculate labels by MAP estimation:
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Step 4: The posterior probability distribution is calculated 
k ∈  and pixels ai ,
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Step 5: Parameters of the Gaussian distribution are 
modified by � k b

i

t| ( )
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An initial segmentation is created in the HMRF method 
for image segmentation by applying a Level set based on the 
grey-level values of pixels. Significantly fewer iterations are 
required to produce final labels using this method compared 

to the MRF-MAP method, demonstrating the importance of 
this procedure.

The suggested technique uses the energy functions created 
for the integration of Clustering based Level-set and MRF to 
establish the first segmentation of pictures. The standard 
Potts model presents the regional prior energy function, often 
known as the potential function, as,
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c j

tk b� � � �
Kronecker delta which equals for and being otherwise.1 0

As an added complication, the posterior energy function 
requires modelling the image’s probability density function.

NT thickness measurement

In the first three months of pregnancy, the NT thickness is a 
key diagnostic indicator. While NT thickness is relatively 
insensitive, this is not the case.18 Fluid accumulates in the 
nuchal region of the foetus, hence the NT size is much more 
susceptible to the deposition than that of the NT thickness. 
The suggested method may also be used to calculate the size 
of the NT. To successfully extract the NT contour from the 
ultrasound picture, the suggested method is used. Because of 
this, calculating the parameters is straightforward and 
achievable. Before we can measure the NT thickness, we 
need to locate its limits. We offer the following approach to 
calculating the NT’s margins inside the chosen ROI. Take 
into account a ROI with N × M dimensions. The NT region is 
measured by the number of pixels that fall inside the NT 
boundary. Edge detection is used on this ROI to identify the 
ceiling and floor. The objective of the thickness evaluation is 
to provide a good estimate for the largest possible separation 
of the two boundaries identified.

Experiment

The proposed research work data collection includes 200 
ultrasound images from the first trimester of pregnancy. 
Dataset is collected from women of the age group 25–40. A 
section of the NT was annotated by specialists. The 
discovered NT edges are shown by the yellow marker 
in (Figure 2).

The error between Measured and Automatic NT thickness 
measurements (Maximum) is shown in Table 2.

Figure 3 shows that the suggested approach has a smaller 
margin of error relative to manual measurement than the 
other methods.

The error between Measured and Automatic NT thickness 
measurements (Minimum) is shown in Table 3.
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Figure 2. Input Image and NT Detected Image.

Figure 3. Comparison of Maximum NT Thickness.
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The minimal thickness of segmented NT is shown in 
Figure 4. The above Figure 4 shows that the suggested 
approach has a smaller margin of error relative to manual 
measurement than the other methods.

Conclusion

Transabdominal or transvaginal ultrasonography is used to 
determine NT thickness in the sagittal region of foetuses. 
Nowadays, clinicians are typically in charge of measuring the 
NT thickness. This necessitates highly competent operators 
and results in data unpredictability. There has only been a small 
investigation on an automated computerised assessment of 
foetal NT. The proposed research work developed a prototype 
for an automated NT thickness measuring system. This study 
proposes an MRF-based model for conceptually segmenting 
the NT area from foetal pictures and offering a quick and 
inexpensive diagnostic during the early phases of pregnancy.

Future Scope

As the proposed method is computationally complex the 
automated determination of the appropriate number of states 
for the above model, or the number of area clusters produced 
by the image segmentation process, is one of their main 

limitations. So in the future researcher can upgrade this using 
deep learning methods. As well as foetal picture size and 
angle departure from the mid-sagittal plane have an impact 
on the NT measures; so the researcher has to take care of it.
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