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Abstract

Review Article

IntroductIon

Parkinsonism is one of the major neurodegenerative disorders 
worldwide. Substantia nigra pars compacta of the central 
nervous system exhibits differential vulnerability to various 
etiological factors of Parkinson’s disease. Parkinson’s disease 
results from several pathological and molecular events that 
provoke neurodegeneration of dopaminergic neurons.[1,2] Soluble 
guanylate cyclase (sGC) enzyme was reported abundantly in 
striatal medium spiny neurons (MSN). MSNs were largely 
located in direct and indirect tracts of the basal ganglia[3-5] and 
involved in normal physiological functions of the basal ganglia 
such as motor activity control[6] as demonstrated in Figure 1. The 
direct pathways include D1 receptors which increase excitatory 
thalamic input to cerebral cortex and increase the motor activity. 
The indirect tracts include D2 receptors which decrease the 
thalamic input to cerebral cortex and the motor activity. In 
Parkinson’s disease, MSN degeneration is due to various 
pathological and molecular mechanisms. These molecular 
and pathological changes in Parkinson’s disease may lead to 

movement disorders such as hypokinesia, tremors, molecular 
rigidity, slowing of gait, and reduced agility.[7] This neuronal 
dysfunction may be aggravated due to persistent activation of 
neuronal pathways, leading to Parkinson’s disease.[8] Cyclic 
guanosine monophosphate (cGMP) pathway was considered 
to be potential pathway in neurotransmission at striatal level.[9] 
sGC is an important enzyme protein in cGMP pathway[10] 
which when derailed may be a causative factor for Parkinson’s 
disease or aggravation of changes in Parkinson’s disease. 
As pathogenesis of Parkinson’s disease is multifactorial, 
sGC-cGMP pathway was considered to review the role of 
sGC as a causative factor. The effect of neurotoxins on sGC in 
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Parkinson’s disease and sGC inhibitors in Parkinson’s disease 
was reviewed. The role of sGC in neurodegeneration and 
Parkinson’s disease was reviewed by exploring the literature 
using PubMed and EMBASE. Databases were searched using 
the following terms: Parkinson’s disease, neurotoxins, guanylate 
cyclase, sGC-cGMP pathway, and neurodegeneration.

soluble guanylate cyclases

sGC (EC 4.6.1.2) is a type of guanylate cyclase enzyme 
belonging to the family lyases.[11] Structurally sGC is a 
heterodimeric protein compound consisting of two subunits 
α and β [Figure 2]. α1, α2, α2i, β1, β2 are the isoforms of 
sGC.[12,13] Most common sGC isoform in the brain is α1β1,[14,15] 
and α2 was also found in the human fetal brain.[16] β subunit 
consists of enzyme activating site with heme residues, but 
both subunits are required for activating the enzyme.[17] 
This enzyme can be affected by neurotransmitters in the 
brain[18] increasing cGMP levels[19] which is responsible for 
glutamate neurotransmission and chronic effects in synaptic 
transmission.[20] Localization of sGC in the specific regions 
of the brain may be related to some of the abnormalities 
in a pathological state or to the pathological condition of a 
particular part of the brain. An in situ hybridization study of 
rat brain revealed that sGC activity in striatum is 2.5–3 times 
more in comparison to other parts of thebrain[21] [Figure 3]. 
Immunohistochemical findings of a study had revealed the 
presence of guanylate cyclase activity abundant in caudate 
putamen complex but could not state whether it is a soluble 
type or particulate type of guanylate cyclase.[22]

soluble guanylate cyclase‑ cyclIc guanosIne 
Monophosphate pathway In parkInsonIsM

sGC-cGMP pathway is a physiological process for synthesis 
of cGMP from guanosine triphosphate which leads to the 

activation of protein kinases to cause various biochemical 
changes at cellular level.[23] Stimulation of sGC increases 
cellular Ca+2 levels due to activation of protein kinase-dependent 
ion channels.[24] This increased Ca+2 causes stimulation of 
glutamate receptors responsible for glutamate transmission 
in MSN of direct and indirect dopaminergic tracts.[25,26] This 
glutamate in turn also regulates the sGC activation through 
regulation of neuronal nitric oxide (NO) synthase[27] or through 
phosphodiesterases, which metabolizes cGMP.[28,29] When there 
is excess stimulation of sGC, it causes glutamate toxicity and 
apoptosis. These are the normal and abnormal events of the 
sGC-cGMP pathway [Figure 4].

Pathological consequences of this pathway may be excess 
glutamate transmission, resulting in abnormal motor behavior 
in the animals or humans,[30,31] and this glutamate toxicity 
may cause generation of reactive oxygen species (ROS) 
at cellular level, leading to apoptosis of neuronal cells in 
dopaminergic tracts.[32,33] Over-expression of this enzyme 
may be of various reasons which may also include genetic 
variations or abnormalities. First factor of over-expression of 
sGC may be excess stimulation causing excess production of 
cGMP which in turn leads to excess glutamate activity.[34] This 
augmented glutamate activity was considered toxic leading 
to apoptosis of neurons[35] which may be caspase dependent 
or independent depending on the site of excess glutamate 
activity in the brain.[36,37] The excess glutamate activity 
causes influx of Ca+2 ions into neurons which leads to 
increase Ca+2 ion concentration intracellularly.[38] This 
results in mitochondrial dysfunction leading to inhibition of 
respiratory chain and ROS accumulation. These mitochondrial 
dysfunction and ROS generation signals may activate 
caspase-dependent apoptosis.[37,39] Here, activation of sGC 
was reviewed and listed various factors which may activate 
sGC and be a causative factor for Parkinson’s disease or an 
aggravation factor for the disease symptoms of Parkinson’s 
disease. Apart from NO which has been considered as 
the principal activator of sGC,[40] carbon monoxide (CO), 
lead (Pb+2) ,  manganese (Mn+2) ,  aluminum (Al+3) , 

Figure 1: Basal ganglia pathways in Parkinson’s disease

Figure 2: Structure of soluble guanylate cyclase
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1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 
hydroxydopamine (6-OHDA), and paraquat may also affect 
the sGC activity.

CO is abundantly available in the environment due to 
pollution.[41] This can chronically affect the sGC leading to the 
changes in striatum.[42] CO exposure resulting in Parkinson’s 
disease was reported by many observational studies all over 
the world.[43-46] CO binds to heme part of sGC at the same 
binding site of NO[47] and causes its stimulation by formation 
of carbonyl-heme complex.[48,49] Preclinical studies revealed 
that CO can stimulate sGC but not as strong as NO.[48] Although 
CO is a weak stimulator of sGC, it may not have controlling 
mechanisms such as NO. Stimulation of sGC with NO is 
regulated by glutamate-dependent neuronal NO synthase. 
Hence, there may be a considerable effect due to CO on sGC 
affecting striatal dopaminergic system through glutamate 
toxicity. A study reported that CO may also be formed from 
hemeoxygenase in the brain.[50] There may be aggravation of 
CO action on sGC either by increased CO levels in corpus 
striatum or due to compromise in neurotrophic factors and 
glutathione.

Pb+2 exposure although controlled in many ways by regulation 
of pollution boards and food and drug regulatory bodies, there 
is still considerable exposure to humans through various 
sources[51,52] affecting or causing diseases even at blood 
lead levels of <10µg/dL.[53,54] Clinical studies have reported 
increased risk of Parkinson’s disease upon exposure to lead 
substances.[55] Till now, direct effects of Pb on sGC in the 
brain were not reported, but it may affect indirectly by causing 
accumulation of arachidonic acid[56] which is also a stimulator 
of sGC similar to CO and NO.[57] Some studies revealed that 
there is downregulation of sGC activity in the aorta when 
subjected to lead in an hypertension animal model.[58] Further 
studies are required to evaluate the effects of lead on sGC in 
brain.

Magnesium (Mg+2) is an important factor facilitating production 
of cGMP as a cofactor for the enzyme reaction.[59,60] Activity 
of guanylate cyclase is more active with Mn+2 than Mg+2,[61] 
but selectivity of Mn+2 on the type of guanylate cyclase has to 
be studied. Here, it may be concluded that any association or 
availability of even weak stimulators of sGC with increased 
Mg+2 or Mn+2 levels in the brain may lead to excess cGMP 
formation and glutamate toxicity in brain.

Aluminum exposure is common as it’s availability is 
8% (approximately) in the earth crust. It is being exposed to 
humans in various forms through air, food, and water. There 
are clinical studies which had reported the involvement of 
aluminum in Parkinson’s disease.[62-65] Aluminum in the form 
of salts such as aluminum citrate and aluminum sulfate was 
reported to increase cyclic GMP levels variably at different 
sites of brain;[66] this may involve the role of sGC. Further, 
studies are required to evaluate role of sGC stimulated by 
aluminum leading to Parkinson’s disease.

MPTP is a neurotoxin, increasing the activity of sGC and 
raising the levels of cGMP in the brain, particularly in striatal 
neurons.[67] This may lead to increased glutamate activity and 
result in apoptosis of striatal neurons. Another neurotoxin 
6-OHDA has also been reported to increase the striatal cGMP 
levels abnormally,[68] which may indicate its role in activation 
of sGC and striatal neurons apoptosis.

Paraquat, as a pesticide neurotoxin causing Parkinson’s disease 
both in human[69] and animals,[70] is known. Preclinical studies 
reported that paraquat had caused loss of striatal fibers in a 
dose-dependent manner.[71-74] There are studies which revealed 
increase in NO activity when subjected to paraquat[75] and also 
competitive inhibition of paraquat-induced ROS formation by 
methylene blue which is an sGC inhibitor.[76] The direct activity 
of paraquat with sGC in the brain is not yet known, but it is 
known to stimulate particulate guanylate cyclase and increase 
the levels of cGMP in the lungs resulting cystic fibrosis.[77]

role of soluble guanylate cyclase InhIbItors In 
parkInsonIsM

In the above section, the importance of sGC in etiopathogenesis 
of Parkinson’s disease has been demonstrated. Now, it 
may be stated that use of guanylate cyclase inhibitors may 
stop the progression of Parkinson’s disease which may 
attenuate the apoptosis of striatal neurons. Preclinical 
studies reported that sGC inhibitor such as 1H-[1,2,4] 
oxadiazolo-[4,3-a] quinoxalin-1-one improved corticostriatal 
synaptic transmission and the motor behavior in mice models 
of MPTP and 6-OHDA.[68] Another study reported the presence 
of endogenous sGC inhibitor (CCTη) which inhibits the 
enzyme in a different manner without affecting the binding of 
NO.[78] Zn+2, Cd+2, and Hg+2 have shown inhibitory effect on 
guanylate cyclase.[61] Further studies can be made in more detail 

Figure 3: Guanylate cyclase location in the rat brain

Figure 4: Soluble guanylate cyclase‑cyclic guanosine monophosphate 
pathway
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to achieve the long-term safety of these drugs preclinically for 
their clinical usage.

conclusIon

sGC being the key enzyme for the synthesis of cGMP and 
one of the responsible factors for causing apoptosis through 
glutamate toxicity may be considered as a causative factor or 
aggravating factor of Parkinson’s disease. This review listed 
out the factors that have probability for stimulating sGC which 
was already listed as neurotoxins causing Parkinson’s disease. 
As Parkinson’s disease is multifactorial and is likely to involve 
different causes in different patients, there is a necessity to 
identify an alternative nondopaminergic mechanism. The 
sGC-cGMP signaling cascade is an emerging candidate for 
second messenger-based therapies of Parkinson’s disease. 
Genetic variability and polymorphism of sGC in the brain 
can also be studied to improve the treatment strategies of 
Parkinson’s disease.
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