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Abstract

Review Article

IntroductIon

Cognitive impairment (CI) in multiple sclerosis (MS) was 
considered as heterogeneous. However, there are studies 
which have stated the pathological basis for deviation of 
cognitive functions in MS, contributing to factors such 
as defects in neural conductions in brain,[1] deviation of 
biochemical components, and up-regulation of cyclic adenosine 
monophosphate (AMP)-specific phosphodiesterases (PDE).[2-5] 
Furthermore, this was considered as an early symptom unnoticed 
in MS.[6] This review also stated many PDE7 inhibitors stated 
in different disease conditions and showed that they could be 
potential for treatment of CI’s in MS. The role of PDE7B in 
CI’s of MS patients was reviewed using the literature from 
PubMed and Embase.

MultIPle sclerosIs

MS is a chronic neuroinflammatory and autoimmune disorder 
affecting the central nervous system.[7] This disease incidence 
varies from onset at 18 years, progressing up to 40 years, 
rare after 50 years of age and more prevalent in the USA 
and European countries.[8-11] In the USA, it was reported 
that 250000–350000 people were suffering from MS and in 
European countries, the prevalence rate was 83 for every 1 lakh 
population. In India, the prevalence of MS was reported as 8.3 

for every 1 lakh population.[12] Many studies reported the higher 
incidence rate in female population than male.[13,14] The etiology 
included genetic and environmental factors.[11-15] Genetic factors 
were reported to be associated with risk of MS. DRβ1 allele 
15.01 of human leukocyte antigen gene located on Chromosome 
6 was considered responsible for MS.[16,17] Another factor 
included was familial recurrence which was reported to have 
20% risk. An inverse relation was observed with a degree of 
consanguinity ranging from 2.77% to 0.88%.[18] MS risk was 
24%–34% in monozygotic twins and 2%–3% in dizygotic 
twins.[19] The environmental factors include the Epstein–Barr 
virus, infectious mononucleosis,[20] Vitamin D,[21] smoking,[22] 
commensal gut flora,[23] childhood and adolescence,[24] vascular 
comorbidities,[25] and gestational environmental influences 
like month of birth.[26] Smoking was reported to cause MS and 
also to aggravate the disease progression. Most of the disease 
risk was associated with the Epstein–Barr virus and infectious 
mononucleosis. It was reported that in the northern hemisphere, 
the births in May were more prone to MS than in November.

Multiple sclerosis (MS) is an autoimmune, chronic degenerative neuroinflammatory disorder affecting younger age groups of the United States 
of America and Europe. MS prevalence studies in India have shown that India is no longer a low-risk zone. Many studies have shown the 
seriousness of cognitive impairments (CIs) and its types caused in MS. In this review, the pathological basis for CI in various stages of MS 
was reviewed and revealed to provide a basis for the treatment. Role of phosphodiesterase 7B1 (PDE7B1) inhibitors in treating CI related to 
MS were also stated in this review. The literature for this review was collected from PubMed and Embase.
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The pathological features of MS include initiation of 
inflammation in white matter resulting finally in axon loss. This 
features characteristic “focal plaques” which are inflammatory 
lesions in the white matter due to demyelination. This further 
progresses to a range of axonal loss and later results in gliosis. 
Inflammatory processes include the crossing of the blood-brain 
barrier by autoreactive T cells, secretion of cytokines, antibody 
induction by plasma cells which results in damage of tissue 
within the plaque.[27] The axonal injury which is secondary 
event caused due to myelin damage in this disease process 
was described in two models. “Outside-in” model states 
axonal injury might be caused due to lesion arising from 
myelin. “Inside-out” model states that secondary myelin 
injury might be triggered by primary axonal injury.[28] This 
results in diffuse atrophy of gray and white matter as disease 
progresses. In further progression, the plaques are rare. The 
preexisting plaques consist of activated microglia at their 
border causing low-grade inflammation. Because of this slow 
and gradual expansion of plaque and secondary demyelination 
occurs.[27] Lucchinetti et al. reported that cerebral cortex was 
also affected in MS.[29] Clinical features of MS include optic 
neuritis, cerebellar symptoms, sensory deficits exhibited 
mostly by relapsing type or initial stages. The progressive 
type may show spinal symptoms such as spasticity, ataxic gait, 
paresis, and corticospinal dysfunctions.[9] This dysfunction 
or disability in MS is measured by the expanded disability 
status scale (EDSS).[30] Based on disease progression and 
clinical course, the patients were grouped under the following 
categories. They are relapsing-remitting MS (RRMS), 
secondary progressive MS (SPMS), primary progressive 
MS (PPMS), and progressive-relapsing MS (PRMS). RRMS 
is the initial stage of the disease including 85% of the MS 
patients and changes to SPMS including 75% on progression. 
Forty percent of the patients gradually progress to PPMS. 
15% of patients were reported to be in PRMS type from the 
onset of MS.[9,31] A study reported that an EDSS score of 6 
is attained by 7 years and 12.5 years in PPMS and SPMS 
category patients, respectively.[30] The diagnosis of MS includes 
magnetic resonance imaging of the central nervous system, 
cerebrospinal fluid examination with clinical correlation.[32]

cognItIve IMPaIrMent In MultIPle sclerosIs

CI symptoms were considered as the earliest symptoms in the 
initial stages of MS.[6] Cognitive dysfunctions in MS patients 
were considered as heterogeneous type. A study revealed MS 
as a causal factor for CI.[33] Cross-sectional studies showed 
CI in 45%–60% MS patients and among these 20%–30% had 
severe dementia in their final stages.[34] Memory, executive 
function, processing speed, information processing, efficient 
verbal fluency, visuospatial analysis, and attention are the 
cognitive functions impaired in MS patients. Processing 
speed impairment and memory impairment are the most 
commonly affected cognitive functions in MS. Processing 
speed is the amount of work done in a given time and memory 
is the amount of information learned and recalled.[35] These 

cognitive functions were evaluated in MS patients by cognitive 
batteries. The most commonly used are the brief visuospatial 
memory test-revised (BVMT-R), California verbal learning 
test–II (CVLT-II) and symbol digit modalities test (SDMT). 
SDMT was considered as most sensitive test in MS patients.[36] 
40%–65% of MS patients showed impairment in memory 
function, but some reported that encoding and storage capacity 
is not breached.[37] Benedict et al. reported that 30%–55% of 
MS patients showed memory impairment (using BVMT-R, 
CVLT-II).[38] Acquisition of new knowledge was found as a 
difficult task in MS patients.[33] Speed of information processing 
was found to be affected in 20%–30% of MS cases and this 
was considered as key deficit which had an impact in work 
environment. The reason for this slowed down of information 
processing was contributed to impaired conduction property of 
demyelinating neurons.[39] Attention function impairment was 
reported in 25% of MS patients.[40] Benedict et al. reported that 
28%–52% of MS patients showed impairment in processing 
speed (using SDMT).[38] Studies related cognitive deficits in 
MS to changes in thalamic nuclei[41-44] and hippocampus.[45-47]

PHosPHodIesterase 7 and cognItIve IMPaIrMent In 
MultIPle sclerosIs

PDE7 is cyclic adenosine monophosphate (cAMP) specific 
hydrolysing enzyme. This enzyme exists in two isoforms, 
namely, PDE7A and PDE7B. These two isoforms exists in 
various transcripts. PDE7A exists as PDE7A1, PDE7A2, 
PDE7A3 and PDE7B exists as PDE7B1, PDE7B2, and 
PDE7B3.[48] Dopaminergic D1 receptors was considered to 
activate PDE7B1 enzymes further playing a major role in 
cAMP/protein kinase A (PKA)/cAMP response element 
binding protein (CREB) pathway regulation, particularly in the 
striatum. This was reported to affect cognition.[49] Activation of 
PDE7B1 causes decrease in levels of cAMP which may have a 
deteriorating effect. cAMP was considered to have a protective 
effect on demyelinating neurons. Furthermore, increased 
striatal dopamine levels were reported in MS.[50] This increased 
dopamine levels were reported to increase pro-inflammatory 
cytokines such as tumor necrosis factor-alpha and interleukin 
10 through D1 receptors.[51]

D1 receptor pathway in the corticostriatal circuit
Dopaminergic receptor D1, play an important role in motor 
control.[52] Furthermore, D1 regulates long-term memory by 
triggering G-proteins. Gαs/olf subunit of G-protein activates 
the C2 site of adenylate cyclase. This causes binding of C1 
and C2 resulting in the synthesis of cAMP from adenosine 
triphosphate.[53,54] cAMP activates guanine nucleotide exchange 
factors (GEFs). This turns on Ras-proximate 1 which induces 
mitogen-activated protein kinase (MAPK) signaling.[55-57] 
MAPK causes phosphorylation of CREB which finally triggers 
the translational and transcription factors resulting in formation 
of long-term memory.[58,59] Phosphorylation of CREB is also 
triggered directly by PKA. This mechanism of long-term 
potentiation of memory is found, not only in hippocampus 
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under development for treatment of asthma, autoimmune 
diseases, and psoriasis.[66,67]

Increasing the levels of cAMP and decreasing the increased 
expression of cAMP-specific PDE could be potential 
combination effect in treatment of MS-related CI. PDE7 
inhibitors have shown protective effects in similar 
pathological events. So a scope for its beneficial importance 
in treatment of MS and its related CI could be given. S14, 
5-imino-1,2,4-thiadiazole (VP1.15) were two PDE inhibitors 
proved to enhance cAMP levels in spinal cord injury mice 
model[68] while VP1.15, quinazoline (TC3.6) showed 
remyelinating effects in an in vitro study with oligodendrocyte 
precursor cells.[69] Enhanced Foxp3 levels was also reported 
with TC3.6, proving its neuroprotective effects.[70] VP1.15 
was reported to enhance early attention processing.[71] A small 
molecule PDE7 inhibitor with heterocyclic structure (S14) was 
proved to antagonize microglial activation. This PDE inhibitor 
also showed improvement in cognitive functions.[72,73] Till 
now, the PDE7 inhibitors available in the market are isoxazole 
derivative compounds, benzo(thio)pyranoimidazolone 
derivatives.[74] Many other PDE7 inhibitors were shown to 
have a neuroprotective effects in MS condition but did not 
reveal about the effects on CI’s.[75-77]

conclusIon

In this review, MS was shown to have a significant role 
in developing cognitive dysfunctions due to its effects in 
hippocampus and corticostriatal regions in brain. PDE7B1 was 
shown to be an important interventional site for the treatment 
of CI’s in MS. Exploring and producing effective PDE7B1 
inhibitors for the treatment CI in MS and studies revealing their 
effectiveness in preclinical and clinical research are required 
as 65% of MS patients were shown to have CI’s.
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