Year : 2013  |  Volume : 4  |  Issue : 1  |  Page : 47-52

Oleanolic acid prevents progression of streptozotocin induced diabetic nephropathy and protects renal microstructures in Sprague Dawley rats

1 Department of Pharmacology and Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra, India
2 Department of Anatomy, Navodaya Medical College, Mantralayam Road, Raichur, Karnataka, India

Correspondence Address:
Chandragouda R Patil
Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0976-500X.107678

Rights and Permissions

Objective: To study the effect of oleanolic acid (OA) on streptozotocin induced diabetic nephropathy in Sprague Dawley rats. Materials and Methods: Four weeks after intra-peritoneal injection of streptozotocin (STZ; 55 mg/kg), the rats with proteinuria were grouped as: Control (non-diabetic, treated orally with vehicle), diabetic control (treated orally with vehicle) and three diabetic groups receiving 20, 40 and 60 mg/kg/day oral doses of OA. At the end of 8 weeks, urine and serum samples from the rats were processed for determination of creatinine, BUN and GFR. The kidney samples were processed for determination of weight changes, oxidative stress related parameters like catalase, superoxide dismutase and reduced glutathione levels. A part of one kidney from each rat was used for transmission electron microscopy (TEM). Result: As evident in TEM, OA inhibited the nephropathy induced alterations in podocyte integrity, basement membrane thickness and spacing between the podocytes at 60 mg/kg dose. It increased GFR and reduced oxidative stress in the kidneys in a dose dependent manner. These findings conclusively demonstrate the efficacy of OA in diabetic nephropathy. Significant decrease in the oxidative stress in kidneys indicates the role of anti-oxidant mechanisms in the effects of OA. However, OA is known to act through multiple mechanisms like inhibition of the generation of advanced glycation end products and improving the insulin secretion. These mechanisms might have contributed to its efficacy. Conclusion: These results conclusively demonstrate the efficacy of OA in diabetic nephropathy through its possible antioxidant activity.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded720    
    Comments [Add]    
    Cited by others 8    

Recommend this journal