Article Cited by others

MOLECULES OF THE MILLENNIUM

Delamanid: A new armor in combating drug-resistant tuberculosis

Xavier Alphienes Stanley, Lakshmanan Mageshwaran

Year : 2014| Volume: 5| Issue : 3 | Page no: 222-224

   This article has been cited by
 
1 Anti-Tubercular Insights of Carbolines – A Decade Critique
Upasana Tewari, Divya Sharma, Shrey Srivastava, Banoth Karan Kumar, Faheem, Sankaranarayanan Murugesan
ChemistrySelect. 2021; 6(9): 2428
[Pubmed]  [Google Scholar] [DOI]
2 Tuberculosis: current scenario, drug targets, and future prospects
Priyanka Bose, Amit K. Harit, Ratnesh Das, Samaresh Sau, Arun K. Iyer, Sushil K. Kashaw
Medicinal Chemistry Research. 2021; 30(4): 807
[Pubmed]  [Google Scholar] [DOI]
3 Drug resistant tuberculosis: Current scenario and impending challenges
Shivendra Singh Dewhare
Indian Journal of Tuberculosis. 2021;
[Pubmed]  [Google Scholar] [DOI]
4 Visible-light-promoted late-stage direct fluoroalkylation of nitroimidazoles
Hezhen Wang, Zhiyuan Wang, Chunyong Wei, Guohui Bai, Yongzheng Chen, Jing Wang, Lei Zhang
Tetrahedron Letters. 2021; 85: 153484
[Pubmed]  [Google Scholar] [DOI]
5 The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis
Mousumi Shyam, Deepak Shilkar, Harshita Verma, Abhimanyu Dev, Barij Nayan Sinha, Federico Brucoli, Sanjib Bhakta, Venkatesan Jayaprakash
Journal of Medicinal Chemistry. 2021; 64(1): 71
[Pubmed]  [Google Scholar] [DOI]
6 1,3-Diarylpyrazolyl-acylsulfonamides as Potent Anti-tuberculosis Agents Targeting Cell Wall Biosynthesis in Mycobacterium tuberculosis
Lutete Peguy Khonde, Rudolf Müller, Grant A. Boyle, Virsinha Reddy, Aloysius T. Nchinda, Charles J. Eyermann, Stephen Fienberg, Vinayak Singh, Alissa Myrick, Efrem Abay, Mathew Njoroge, Nina Lawrence, Qin Su, Timothy G. Myers, Helena I. M. Boshoff, Clifton E. Barry, Frederick A. Sirgel, Paul D. van Helden, Lisa M. Massoudi, Gregory T. Robertson, Anne J. Lenaerts, Gregory S. Basarab, Sandeep R. Ghorpade, Kelly Chibale
Journal of Medicinal Chemistry. 2021; 64(17): 12790
[Pubmed]  [Google Scholar] [DOI]
7 A consequence of drug targeting of aminoacyl-tRNA synthetases in Mycobacterium tuberculosis
Umar Ndagi, Hezekiel M. Kumalo, Ndumiso N. Mhlongo
Chemical Biology & Drug Design. 2021; 98(3): 421
[Pubmed]  [Google Scholar] [DOI]
8 Identification of Potential Binders of Mtb Universal Stress Protein (Rv1636) Through an in silico Approach and Insights Into Compound Selection for Experimental Validation
Sohini Chakraborti, Moubani Chakraborty, Avipsa Bose, Narayanaswamy Srinivasan, Sandhya S. Visweswariah
Frontiers in Molecular Biosciences. 2021; 8
[Pubmed]  [Google Scholar] [DOI]
9 The Role of Nitroreductases in Resistance to Nitroimidazoles
Carol Thomas, Christopher D. Gwenin
Biology. 2021; 10(5): 388
[Pubmed]  [Google Scholar] [DOI]
10 Nitroaromatic Antibiotics as Nitrogen Oxide Sources
Allison M. Rice, Yueming Long, S. Bruce King
Biomolecules. 2021; 11(2): 267
[Pubmed]  [Google Scholar] [DOI]
11 Cathepsins and Their Endogenous Inhibitors in Host Defense During Mycobacterium tuberculosis and HIV Infection
Elsa Anes, José Miguel Azevedo-Pereira, David Pires
Frontiers in Immunology. 2021; 12
[Pubmed]  [Google Scholar] [DOI]
12 Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010–2020 Review
Klaudia T. Angula, Lesetja J. Legoabe, Richard M. Beteck
Pharmaceuticals. 2021; 14(5): 461
[Pubmed]  [Google Scholar] [DOI]
13 Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment
Filia Stephanie, Mutiara Saragih, Usman Sumo Friend Tambunan
Pharmaceutics. 2021; 13(5): 592
[Pubmed]  [Google Scholar] [DOI]
14 Population Pharmacokinetic Analysis of Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis
Xiaofeng Wang, Suresh Mallikaarjun, Ekaterina Gibiansky
Antimicrobial Agents and Chemotherapy. 2020; 65(1)
[Pubmed]  [Google Scholar] [DOI]
15 Bedaquiline and Delamanid in Children With XDR Tuberculosis: What is prolonged QTc?
Ira Shah, Srushti Gandhi, Naman S. Shetty
Pediatric Infectious Disease Journal. 2020; 39(6): 512
[Pubmed]  [Google Scholar] [DOI]
16

Leishmania donovani Growth Inhibitors from Pathogen Box Compounds of Medicine for Malaria Venture

Markos Tadele, Solomon M Abay, Eyasu Makonnen, Asrat Hailu
Drug Design, Development and Therapy. 2020; Volume 14: 1307
[Pubmed]  [Google Scholar] [DOI]
17 Recent Advances in the Synthesis and Development of Nitroaromatics as Anti-Infective Drugs
Christina Kannigadu, David. D. N'Da
Current Pharmaceutical Design. 2020; 26(36): 4658
[Pubmed]  [Google Scholar] [DOI]
18 New Insights in Design and Development of Antitubercular Drugs
Snehlata Yadav, Balasubramanian Narasimhan
Current Bioactive Compounds. 2020; 16(1): 13
[Pubmed]  [Google Scholar] [DOI]
19 Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids
Alka Pawar, Prakash Jha, Madhu Chopra, Uma Chaudhry, Daman Saluja
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
20 Antitubercular and Antiparasitic 2-Nitroimidazopyrazinones with Improved Potency and Solubility
Chee Wei Ang, Lendl Tan, Melissa L. Sykes, Neda AbuGharbiyeh, Anjan Debnath, Janet C. Reid, Nicholas P. West, Vicky M. Avery, Matthew A. Cooper, Mark A. T. Blaskovich
Journal of Medicinal Chemistry. 2020; 63(24): 15726
[Pubmed]  [Google Scholar] [DOI]
21 Comparative genomics shows differences in the electron transport and carbon metabolic pathways of Mycobacterium africanum relative to Mycobacterium tuberculosis and suggests an adaptation to low oxygen tension
Boatema Ofori-Anyinam, Abi Janet Riley, Tijan Jobarteh, Ensa Gitteh, Binta Sarr, Tutty Isatou Faal-Jawara, Leen Rigouts, Madikay Senghore, Aderemi Kehinde, Nneka Onyejepu, Martin Antonio, Bouke C. de Jong, Florian Gehre, Conor J. Meehan
Tuberculosis. 2020; 120: 101899
[Pubmed]  [Google Scholar] [DOI]
22 Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives
Tom Armstrong, Malcolm Lamont, Alice Lanne, Luke J. Alderwick, Neil R. Thomas
Bioorganic & Medicinal Chemistry. 2020; 28(22): 115744
[Pubmed]  [Google Scholar] [DOI]
23 Discovery of thienothiazolocarboxamide analogues as novel anti-tubercular agent
Guanghai Jin, Young Mi Kim, Aram Lee, Junghwan Choi, Sunhee Kang, Mooyoung Seo, Jeong Jea Seo, Sumi Lee, Juhee Kang, Jaeseung Kim, Sinyoung Park, Minjeong Woo, Virgínia Carla de Almeida Falcão, Honggun Lee, Jinyeong Heo, David Shum, Kaapjoo Park, Vincent Delorme, Inhee Choi
Bioorganic & Medicinal Chemistry. 2020; 28(23): 115797
[Pubmed]  [Google Scholar] [DOI]
24 Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase
Andrei L. Osterman, Irina Rodionova, Xiaoqing Li, Eduard Sergienko, Chen-Ting Ma, Antonino Catanzaro, Mark E. Pettigrove, Robert W. Reed, Rashmi Gupta, Kyle H. Rohde, Konstantin V. Korotkov, Leonardo Sorci
ACS Chemical Biology. 2019; 14(5): 949
[Pubmed]  [Google Scholar] [DOI]
25 Development and validation of LC–MS/MS method for determination of DNDI-VL-2098 in mouse, rat, dog and hamster blood
Bhavesh D Patel, Ritika Uppal, Nageswararao Pulakundam, Jignesh P Patel, Vikram Ramanathan, Rakshit Ameta, Delphine Launay, Stéphanie Braillard
Bioanalysis. 2019; 11(15): 1419
[Pubmed]  [Google Scholar] [DOI]
26 New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers
Serge Mignani,Rama Tripathi,Liang Chen,Anne-Marie Caminade,Xiangyang Shi,Jean-Pierre Majoral
Pharmaceutics. 2018; 10(3): 105
[Pubmed]  [Google Scholar] [DOI]
27 Mycobacterial protein tyrosine kinase, PtkA phosphorylates PtpA at tyrosine residues and the mechanism is stalled by the novel series of inhibitors
Swati Jaiswal,Aditi Chatterjee,Sapna Pandey,Kiran Lata,Ranjith Kumar Gadi,Rajesh Manda,Sanjay Kumar,Maddi Sridhar Reddy,Ravishankar Ramachandran,Kishore K. Srivastava
Journal of Drug Targeting. 2018; : 1
[Pubmed]  [Google Scholar] [DOI]
28 Design, Synthesis, and Biological Evaluation of 2-Nitroimidazopyrazin-one/-es with Antitubercular and Antiparasitic Activity
Angie M. Jarrad, Chee Wei Ang, Anjan Debnath, Hye Jee Hahn, Kyra Woods, Lendl Tan, Melissa L. Sykes, Amy J. Jones, Ruby Pelingon, Mark S. Butler, Vicky M. Avery, Nicholas P. West, Tomislav Karoli, Mark A. T. Blaskovich, Matthew A. Cooper
Journal of Medicinal Chemistry. 2018; 61(24): 11349
[Pubmed]  [Google Scholar] [DOI]
29 Drug discovery in tuberculosis. New drug targets and antimycobacterial agents
André Campaniço,Rui Moreira,Francisca Lopes
European Journal of Medicinal Chemistry. 2018; 150: 525
[Pubmed]  [Google Scholar] [DOI]
30 Rational Design, Synthesis, and Biological Evaluation of Heterocyclic Quinolones Targeting the Respiratory Chain of Mycobacterium tuberculosis
W. David Hong,Peter D. Gibbons,Suet C. Leung,Richard Amewu,Paul A. Stocks,Andrew Stachulski,Pedro Horta,Maria L. S. Cristiano,Alison E. Shone,Darren Moss,Alison Ardrey,Raman Sharma,Ashley J. Warman,Paul T. P. Bedingfield,Nicholas E. Fisher,Ghaith Aljayyoussi,Sally Mead,Maxine Caws,Neil G. Berry,Stephen A. Ward,Giancarlo A. Biagini,Paul M. O’Neill,Gemma L. Nixon
Journal of Medicinal Chemistry. 2017;
[Pubmed]  [Google Scholar] [DOI]
31 Nitroimidazoles – molecular fireworks that combat a broad spectrum of infectious diseases
Chee Wei Ang,Angie M Jarrad,Matthew A. Cooper,Mark Arnold Thomas Blaskovich
Journal of Medicinal Chemistry. 2017;
[Pubmed]  [Google Scholar] [DOI]
32 News on therapeutic management of MDR-tuberculosis: a literature review
Lucie Barthod,Jean-Guillaume Lopez,Christophe Curti,Charléric Bornet,Manon Roche,Marc Montana,Patrice Vanelle
Journal of Chemotherapy. 2017; : 1
[Pubmed]  [Google Scholar] [DOI]
33 Anti-mycobacterial alkaloids, cyclic 3-alkyl pyridinium dimers, from the Indonesian marine sponge Haliclona sp.
Wilmar Maarisit,Delfly B. Abdjul,Hiroyuki Yamazaki,Hajime Kato,Henki Rotinsulu,Defny S. Wewengkang,Deiske A. Sumilat,Magie M. Kapojos,Kazuyo Ukai,Michio Namikoshi
Bioorganic & Medicinal Chemistry Letters. 2017;
[Pubmed]  [Google Scholar] [DOI]
34 Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis
Priya Singh,Rashmi Kumari,Rup Lal
Indian Journal of Microbiology. 2017; 57(4): 371
[Pubmed]  [Google Scholar] [DOI]
35 Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance
Vahid Lohrasbi,Malihe Talebi,Abed Zahedi Bialvaei,Lanfranco Fattorini,Michel Drancourt,Mohsen Heidary,Davood Darban-Sarokhalil
Tuberculosis. 2017;
[Pubmed]  [Google Scholar] [DOI]
36 QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity
Marcelo N. Gomes,Rodolpho C. Braga,Edyta M. Grzelak,Bruno J. Neves,Eugene Muratov,Rui Ma,Larry L. Klein,Sanghyun Cho,Guilherme R. Oliveira,Scott G. Franzblau,Carolina Horta Andrade
European Journal of Medicinal Chemistry. 2017; 137: 126
[Pubmed]  [Google Scholar] [DOI]
37 Drug development against tuberculosis: Impact of alkaloids
Shardendu K. Mishra,Garima Tripathi,Navneet Kishore,Rakesh K. Singh,Archana Singh,Vinod K. Tiwari
European Journal of Medicinal Chemistry. 2017; 137: 504
[Pubmed]  [Google Scholar] [DOI]
38 Synergistic Response of Rifampicin with Hydroperoxides on Mycobacterium: A Mechanistic Study
Yesha S. Patel,Sarika Mehra
Frontiers in Microbiology. 2017; 8
[Pubmed]  [Google Scholar] [DOI]
39 Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds
Guilherme Fernandes,Chung Man Chin,Jean Dos Santos
Pharmaceuticals. 2017; 10(2): 51
[Pubmed]  [Google Scholar] [DOI]
40 Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas
Yu Zhou,Jiang Wang,Zhanni Gu,Shuni Wang,Wei Zhu,José Luis Aceña,Vadim A. Soloshonok,Kunisuke Izawa,Hong Liu
Chemical Reviews. 2016; 116(2): 422
[Pubmed]  [Google Scholar] [DOI]
41 Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions
Monika Gaba,Chander Mohan
Medicinal Chemistry Research. 2016; 25(2): 173
[Pubmed]  [Google Scholar] [DOI]
42 New prodrugs against tuberculosis
Giorgia Mori,Laurent Roberto Chiarelli,Giovanna Riccardi,Maria Rosalia Pasca
Drug Discovery Today. 2016;
[Pubmed]  [Google Scholar] [DOI]
43 In Vitro Evaluation of Inhalable Verapamil-Rifapentine Particles for Tuberculosis Therapy
T. Parumasivam,J. G. Y. Chan,A. Pang,D. H. Quan,J. A. Triccas,W. J. Britton,H. K. Chan
Molecular Pharmaceutics. 2016;
[Pubmed]  [Google Scholar] [DOI]
44 Hit and lead criteria in drug discovery for infectious diseases of the developing world
Kei Katsuno,Jeremy N. Burrows,Ken Duncan,Rob Hooft van Huijsduijnen,Takushi Kaneko,Kiyoshi Kita,Charles E. Mowbray,Dennis Schmatz,Peter Warner,B. T. Slingsby
Nature Reviews Drug Discovery. 2015; 14(11): 751
[Pubmed]  [Google Scholar] [DOI]
45 Bedaquiline and delamanid in tuberculosis
Susanna Esposito,Sonia Bianchini,Francesco Blasi
Expert Opinion on Pharmacotherapy. 2015; 16(15): 2319
[Pubmed]  [Google Scholar] [DOI]
46 Management of drug resistantTB in patients with HIV co-infection
Emanuele Pontali,Giovanni Sotgiu,Rosella Centis,Lia D’Ambrosio,Antonio Spanevello,Giovanni Battista Migliori
Expert Opinion on Pharmacotherapy. 2015; 16(18): 2737
[Pubmed]  [Google Scholar] [DOI]
47 The anti-tuberculosis agents under development and the challenges ahead
Deepak Kumar,Beena Negi,Diwan S Rawat
Future Medicinal Chemistry. 2015; 7(15): 1981
[Pubmed]  [Google Scholar] [DOI]
48 Anti-Mycobacterial Nucleoside Antibiotics from a Marine-Derived Streptomyces sp. TPU1236A
Ying-Yue Bu,Hiroyuki Yamazaki,Kazuyo Ukai,Michio Namikoshi
Marine Drugs. 2014; 12(12): 6102
[Pubmed]  [Google Scholar] [DOI]

 

Read this article